
UNIT - I
Conventional Software Management: The waterfall model, conventional software Management performance.
Evolution of Software Economics: Software Economics, pragmatic software cost estimation
Improving Software Economics: Reducing Software product size, improving software processes, improving
team effectiveness, improving automation, Achieving required quality, peer inspections.

1. Conventional software management
Conventional software management practices are sound in theory, but practice is still tied to archaic (outdated)
technology and techniques.
Conventional software economics provides a benchmark of performance for conventional software manage-
ment principles.
The best thing about software is its flexibility: It can be programmed to do almost anything.
The worst thing about software is also its flexibility: The "almost anything" characteristic has made it difficult
to plan, monitors, and control software development.
Three important analyses of the state of the software engineering industry are

1. Software development is still highly unpredictable. Only about 10% of software projects are
delivered successfully within initial budget and schedule estimates.

2. Management discipline is more of a discriminator in success or failure than are technology advances.
3. The level of software scrap and rework is indicative of an immature process.

All three analyses reached the same general conclusion: The success rate for software projects is very low.
The three analyses provide a good introduction to the magnitude of the software problem and the current
norms for conventional software management performance.

1.1 THE WATERFALL MODEL
Most software engineering texts present the waterfall model as the source of the "conventional" software
process.
1.1.1 IN THEORY
It provides an insightful and concise summary of conventional software management
Three main primary points are

1. There are two essential steps common to the development of computer programs: analysis and
coding.
Waterfall Model part 1: The two basic steps to building a program.

2. In order to manage and control all of the intellectual freedom associated with software development,

one must introduce several other "overhead" steps, including system requirements definition,
software requirements definition, program design, and testing. These steps supplement the analysis
and coding steps. Below Figure illustrates the resulting project profile and the basic steps in
developing a large-scale program.

Analysis and coding both involve creative work that
directly contributes to the usefulness of the end product.

Analysis

Coding

Requirement

Analysis

Design

Coding

3. The basic framework described in the waterfall model is risky and invites failure. The testing phase

that occurs at the end of the development cycle is the first event for which timing, storage,
input/output transfers, etc., are experienced as distinguished from analyzed. The resulting design
changes are likely to be so disruptive that the software requirements upon which the design is based
are likely violated. Either the requirements must be modified or a substantial design change is
warranted.

Five necessary improvements for waterfall model are:-

1. Program design comes first. Insert a preliminary program design phase between the software
requirements generation phase and the analysis phase. By this technique, the program designer
assures that the software will not fail because of storage, timing, and data flux (continuous
change). As analysis proceeds in the succeeding phase, the program designer must impose on the
analyst the storage, timing, and operational constraints in such a way that he senses the consequences.
If the total resources to be applied are insufficient or if the embryonic(in an early stage of
development) operational design is wrong, it will be recognized at this early stage and the iteration
with requirements and preliminary design can be redone before final design, coding, and test
commences. How is this program design procedure implemented?

The following steps are required:

Begin the design process with program designers, not analysts or programmers.
Design, define, and allocate the data processing modes even at the risk of being wrong. Allocate
processing functions, design the database, allocate execution time, define interfaces and processing
modes with the operating system, describe input and output processing, and define preliminary
operating procedures.
Write an overview document that is understandable, informative, and current so that every worker
on the project can gain an elemental understanding of the system.

2. Document the design. The amount of documentation required on most software programs is quite a lot,
certainly much more than most programmers, analysts, or program designers are willing to do if left to their
own devices. Why do we need so much documentation? (1) Each designer must communicate with interfacing
designers, managers, and possibly customers. (2) During early phases, the documentation is the design. (3) The
real monetary value of documentation is to support later modifications by a separate test team, a separate
maintenance team, and operations personnel who are not software literate.

3. Do it twice. If a computer program is being developed for the first time, arrange matters so that the version

finally delivered to the customer for operational deployment is actually the second version insofar as critical
design/operations are concerned. Note that this is simply the entire process done in miniature, to a time scale
that is relatively small with respect to the overall effort. In the first version, the team must have a special
broad competence where they can quickly sense trouble spots in the design, model them, model alternatives,
forget the straightforward aspects of the design that aren't worth studying at this early point, and, finally,
arrive at an error-free program.

4. Plan, control, and monitor testing. Without question, the biggest user of project resources-manpower,

computer time, and/or management judgment-is the test phase. This is the phase of greatest risk in terms of
cost and schedule. It occurs at the latest point in the schedule, when backup alternatives are least available, if
at all. The previous three recommendations were all aimed at uncovering and solving problems before
entering the test phase. However, even after doing these things, there is still a test phase and there are still
important things to be done, including: (1) employ a team of test specialists who were not responsible for the

Operation

Testing

original design; (2) employ visual inspections to spot the obvious errors like dropped minus signs, missing
factors of two, jumps to wrong addresses (do not use the computer to detect this kind of thing, it is too
expensive); (3) test every logic path; (4) employ the final checkout on the target computer.

5. Involve the customer. It is important to involve the customer in a formal way so that he has committed
himself at earlier points before final delivery. There are three points following requirements definition where
the insight, judgment, and commitment of the customer can bolster the development effort. These include a
"preliminary software review" following the preliminary program design step, a sequence of "critical software
design reviews" during program design, and a "final software acceptance review".

1.1.2 IN PRACTICE
Some software projects still practice the conventional software management approach.

It is useful to summarize the characteristics of the conventional process as it has typically been applied,
which is not necessarily as it was intended. Projects destined for trouble frequently exhibit the following
symptoms:

 Protracted integration and late design breakage.
 Late risk resolution.
 Requirements-driven functional decomposition.
 Adversarial (conflict or opposition) stakeholder relationships.
 Focus on documents and review meetings.

Protracted Integration and Late Design Breakage
For a typical development project that used a waterfall model management process, Figure 1-2 illustrates
development progress versus time. Progress is defined as percent coded, that is, demonstrable in its target form.

The following sequence was common:

 Early success via paper designs and thorough (often too thorough) briefings.
 Commitment to code late in the life cycle.
 Integration nightmares (unpleasant experience) due to unforeseen implementation issues and interface

ambiguities.
 Heavy budget and schedule pressure to get the system working.
 Late shoe-homing of no optimal fixes, with no time for redesign.
 A very fragile, unmentionable product delivered late.

In the conventional model, the entire system was designed on paper, then implemented all at once, then
integrated. Table 1-1 provides a typical profile of cost expenditures across the spectrum of software activities.

Late risk resolution A serious issue associated with the waterfall lifecycle was the lack of early risk resolution.
Figure 1.3 illustrates a typical risk profile for conventional waterfall model projects. It includes four distinct
periods of risk exposure, where risk is defined as the probability of missing a cost, schedule, feature, or quality
goal. Early in the life cycle, as the requirements were being specified, the actual risk exposure was highly
unpredictable.

Requirements-Driven Functional Decomposition: This approach depends on specifying requirements com-
pletely and unambiguously before other development activities begin. It naively treats all requirements as
equally important, and depends on those requirements remaining constant over the software development life
cycle. These conditions rarely occur in the real world. Specification of requirements is a difficult and important
part of the software development process.

Another property of the conventional approach is that the requirements were typically specified in a
functional manner. Built into the classic waterfall process was the fundamental assumption that the software
itself was decomposed into functions; requirements were then allocated to the resulting components. This
decomposition was often very different from a decomposition based on object-oriented design and the use of
existing components. Figure 1-4 illustrates the result of requirements-driven approaches: a software structure
that is organized around the requirements specification structure.

Adversarial Stakeholder Relationships:
The conventional process tended to result in adversarial stakeholder relationships, in large part because of the
difficulties of requirements specification and the exchange of information solely through paper documents that
captured engineering information in ad hoc formats.

The following sequence of events was typical for most contractual software efforts:

1. The contractor prepared a draft contract-deliverable document that captured an intermediate artifact
and delivered it to the customer for approval.

 2. The customer was expected to provide comments (typically within 15 to 30 days).

3. The contractor incorporated these comments and submitted (typically within 15 to 30 days) a final
version for approval.

This one-shot review process encouraged high levels of sensitivity on the part of customers and contractors.

Focus on Documents and Review Meetings:
The conventional process focused on producing various documents that attempted to describe the software
product, with insufficient focus on producing tangible increments of the products themselves. Contractors
were driven to produce literally tons of paper to meet milestones and demonstrate progress to stakeholders,
rather than spend their energy on tasks that would reduce risk and produce quality software. Typically,
presenters and the audience reviewed the simple things that they understood rather than the complex and
important issues. Most design reviews therefore resulted in low engineering value and high cost in terms of the
effort and schedule involved in their preparation and conduct. They presented merely a facade of progress.
Table 1-2 summarizes the results of a typical design review.

1.2 CONVENTIONAL SOFTWARE MANAGEMENT PERFORMANCE

Barry Boehm's "Industrial Software Metrics Top 10 List” is a good, objective characterization of the state of
software development.

1. Finding and fixing a software problem after delivery costs 100 times more than finding and fixing the
problem in early design phases.

2. You can compress software development schedules 25% of nominal, but no more.
3. For every $1 you spend on development, you will spend $2 on maintenance.
4. Software development and maintenance costs are primarily a function of the number of source lines

of code.
5. Variations among people account for the biggest differences in software productivity.
6. The overall ratio of software to hardware costs is still growing. In 1955 it was 15:85; in 1985, 85:15.
7. Only about 15% of software development effort is devoted to programming.
8. Software systems and products typically cost 3 times as much per SLOC as individual software

programs. Software-system products (i.e., system of systems) cost 9 times as much.

9. Walkthroughs catch 60% of the errors
10. 80% of the contribution comes from 20% of the contributors.

2.Evolution of Software Economics

 2.1 SOFTWARE ECONOMICS
Most software cost models can be abstracted into a function of five basic parameters: size, process, personnel,
environment, and required quality.

1. The size of the end product (in human-generated components), which is typically quantified in terms
of the number of source instructions or the number of function points required to develop the
required functionality

2. The process used to produce the end product, in particular the ability of the process to avoid non-
value-adding activities (rework, bureaucratic delays, communications overhead)

3. The capabilities of software engineering personnel, and particularly their experience with the
computer science issues and the applications domain issues of the project

4. The environment, which is made up of the tools and techniques available to support efficient
software development and to automate the process

5. The required quality of the product, including its features, performance, reliability, and adaptability

The relationships among these parameters and the estimated cost can be written as follows:

Effort = (Personnel) (Environment) (Quality) (Sizeprocess)

One important aspect of software economics (as represented within today's software cost models) is that
the relationship between effort and size exhibits a diseconomy of scale. The diseconomy of scale of software
development is a result of the process exponent being greater than 1.0. Contrary to most manufacturing
processes, the more software you build, the more expensive it is per unit item.

Figure 2-1 shows three generations of basic technology advancement in tools, components, and processes.
The required levels of quality and personnel are assumed to be constant. The ordinate of the graph refers to
software unit costs (pick your favorite: per SLOC, per function point, per component) realized by an
organization.
The three generations of software development are defined as follows:

1) Conventional: 1960s and 1970s, craftsmanship. Organizations used custom tools, custom processes,
and virtually all custom components built in primitive languages. Project performance was highly
predictable in that cost, schedule, and quality objectives were almost always underachieved.

2) Transition: 1980s and 1990s, software engineering. Organiz:1tions used more-repeatable processes and off-
the-shelf tools, and mostly (>70%) custom components built in higher level languages. Some of the

components (<30%) were available as commercial products, including the operating system, database
management system, networking, and graphical user interface.

3) Modern practices: 2000 and later, software production. This book's philosophy is rooted in the
 use of managed and measured processes, integrated automation environments, and mostly
 (70%) off-the-shelf components. Perhaps as few as 30% of the components need to be custom
 built

Technologies for environment automation, size reduction, and process improvement are not independent of
one another. In each new era, the key is complementary growth in all technologies. For example, the process
advances could not be used successfully without new component technologies and increased tool automation.

Organizations are achieving better economies of scale in successive technology eras-with very large projects
(systems of systems), long-lived products, and lines of business comprising multiple similar projects. Figure 2-2
provides an overview of how a return on investment (ROI) profile can be achieved in subsequent efforts across

life cycles of various domains.

2.2 PRAGMATIC SOFTWARE COST ESTIMATION
One critical problem in software cost estimation is a lack of well-documented case studies of projects that used
an iterative development approach. Software industry has inconsistently defined metrics or atomic units of
measure, the data from actual projects are highly suspect in terms of consistency and comparability. It is hard
enough to collect a homogeneous set of project data within one organization; it is extremely difficult to homog-
enize data across different organizations with different processes, languages, domains, and so on.
There have been many debates among developers and vendors of software cost estimation models and tools.
Three topics of these debates are of particular interest here:

1. Which cost estimation model to use?
2. Whether to measure software size in source lines of code or function points.
3. What constitutes a good estimate?

There are several popular cost estimation models (such as COCOMO, CHECKPOINT, ESTIMACS,
KnowledgePlan, Price-S, ProQMS, SEER, SLIM, SOFTCOST, and SPQR/20), CO COMO is also one of the
most open and well-documented cost estimation models. The general accuracy of conventional cost models
(such as COCOMO) has been described as "within 20% of actuals, 70% of the time."

Most real-world use of cost models is bottom-up (substantiating a target cost) rather than top-down
(estimating the "should" cost). Figure 2-3 illustrates the predominant practice: The software project manager
defines the target cost of the software, and then manipulates the parameters and sizing until the target cost can
be justified. The rationale for the target cost maybe to win a proposal, to solicit customer funding, to attain
internal corporate funding, or to achieve some other goal.
The process described in Figure 2-3 is not all bad. In fact, it is absolutely necessary to analyze the cost risks and
understand the sensitivities and trade-offs objectively. It forces the software project manager to examine the
risks associated with achieving the target costs and to discuss this information with other stakeholders.
A good software cost estimate has the following attributes:
 It is conceived and supported by the project manager, architecture team, development team, and test

team accountable for performing the work.
 It is accepted by all stakeholders as ambitious but realizable.
 It is based on a well-defined software cost model with a credible basis.
 It is based on a database of relevant project experience that includes similar processes, similar

technologies, similar environments, similar quality requirements, and similar people.
 It is defined in enough detail so that its key risk areas are understood and the probability of success is

objectively assessed.
Extrapolating from a good estimate, an ideal estimate would be derived from a mature cost model with an
experience base that reflects multiple similar projects done by the same team with the same mature processes
and tools.

3. Improving Software Economics
Five basic parameters of the software cost model are

1.Reducing the size or complexity of what needs to be developed.

2. Improving the development process.

3. Using more-skilled personnel and better teams (not necessarily the same thing).

4. Using better environments (tools to automate the process).

5. Trading off or backing off on quality thresholds.

These parameters are given in priority order for most software domains. Table 3-1 lists some of the

technology developments, process improvement efforts, and management approaches targeted at

improving the economics of software development and integration.

3.1 REDUCING SOFTWARE PRODUCT SIZE
The most significant way to improve affordability and return on investment (ROI) is usually to produce a
product that achieves the design goals with the minimum amount of human-generated source material.
Component-based development is introduced as the general term for reducing the "source" language size to
achieve a software solution.
Reuse, object-oriented technology, automatic code production, and higher order programming languages are all
focused on achieving a given system with fewer lines of human-specified source directives (statements).
size reduction is the primary motivation behind improvements in higher order languages (such as C++, Ada 95,
Java, Visual Basic), automatic code generators (CASE tools, visual modeling tools, GUI builders), reuse of
commercial components (operating systems, windowing environments, database management systems,
middleware, networks), and object-oriented technologies (Unified Modeling Language, visual modeling tools,
architecture frameworks).
The reduction is defined in terms of human-generated source material. In general, when size-reducing
technologies are used, they reduce the number of human-generated source lines.

3.1.1 LANGUAGES
Universal function points (UFPs1) are useful estimators for language-independent, early life-cycle estimates.
The basic units of function points are external user inputs, external outputs, internal logical data groups,
external data interfaces, and external inquiries. SLOC metrics are useful estimators for software after a
candidate solution is formulated and an implementation language is known. Substantial data have been
documented relating SLOC to function points. Some of these results are shown in Table 3-2.

Languages expressiveness of some of today’s popular languages
LANGUAGES SLOC per UFP

1 Function point metrics provide a standardized method for measuring the various functions of a software application.
The basic units of function points are external user inputs, external outputs, internal logical data groups, external data interfaces, and
external inquiries.

Assembly 320
C 128
FORTAN77 105
COBOL85 91
Ada83 71
C++ 56
Ada95 55
Java 55
Visual Basic 35

Table 3-2

3.1.2 OBJECT-ORIENTED METHODS AND VISUAL MODELING
Object-oriented technology is not germane to most of the software management topics discussed here, and
books on object-oriented technology abound. Object-oriented programming languages appear to benefit both
software productivity and software quality. The fundamental impact of object-oriented technology is in
reducing the overall size of what needs to be developed.
People like drawing pictures to explain something to others or to themselves. When they do it for software
system design, they call these pictures diagrams or diagrammatic models and the very notation for them a
modeling language.
These are interesting examples of the interrelationships among the dimensions of improving software eco-
nomics.

1. An object-oriented model of the problem and its solution encourages a common vocabulary between
the end users of a system and its developers, thus creating a shared understanding of the problem
being solved.

2. The use of continuous integration creates opportunities to recognize risk early and make incremental
corrections without destabilizing the entire development effort.

3. An object-oriented architecture provides a clear separation of concerns among disparate elements of a
system, creating firewalls that prevent a change in one part of the system from rending the fabric of
the entire architecture.

Booch also summarized five characteristics of a successful object-oriented project.

1. A ruthless focus on the development of a system that provides a well understood collection of essential
minimal characteristics.

2. The existence of a culture that is centered on results, encourages communication, and yet is not afraid
to fail.

3. The effective use of object-oriented modeling.
4. The existence of a strong architectural vision.
5. The application of a well-managed iterative and incremental development life cycle.

3.1.3 REUSE
Reusing existing components and building reusable components have been natural software engineering
activities since the earliest improvements in programming languages. With reuse in order to minimize
development costs while achieving all the other required attributes of performance, feature set, and quality. Try
to treat reuse as a mundane part of achieving a return on investment.

Most truly reusable components of value are transitioned to commercial products supported by

organizations with the following characteristics:

 They have an economic motivation for continued support.
 They take ownership of improving product quality, adding new features, and transitioning to new

technologies.
 They have a sufficiently broad customer base to be profitable.

The cost of developing a reusable component is not trivial. Figure 3-1 examines the economic trade-offs. The
steep initial curve illustrates the economic obstacle to developing reusable components.
Reuse is an important discipline that has an impact on the efficiency of all workflows and the quality of most
artifacts.

3.1.4 COMMERCIAL COMPONENTS
A common approach being pursued today in many domains is to maximize integration of commercial
components and off-the-shelf products. While the use of commercial components is certainly desirable as a
means of reducing custom development, it has not proven to be straightforward in practice. Table 3-3 identifies
some of the advantages and disadvantages of using commercial components.

3.2 IMPROVING SOFTWARE PROCESSES

Process is an overloaded term. Three distinct process perspectives are.

 Metaprocess: an organization's policies, procedures, and practices for pursuing a software-intensive
line of business. The focus of this process is on organizational economics, long-term strategies, and

software ROI.
 Macroprocess: a project's policies, procedures, and practices for producing a complete software

product within certain cost, schedule, and quality constraints. The focus of the macro process is on
creating an adequate instance of the Meta process for a specific set of constraints.

 Microprocess: a project team's policies, procedures, and practices for achieving an artifact of the
software process. The focus of the micro process is on achieving an intermediate product baseline
with adequate quality and adequate functionality as economically and rapidly as practical.

Although these three levels of process overlap somewhat, they have different objectives, audiences, metrics,
concerns, and time scales as shown in Table 3-4

In a perfect software engineering world with an immaculate problem description, an obvious solution space, a
development team of experienced geniuses, adequate resources, and stakeholders with common goals, we
could execute a software development process in one iteration with almost no scrap and rework. Because we
work in an imperfect world, however, we need to manage engineering activities so that scrap and rework
profiles do not have an impact on the win conditions of any stakeholder. This should be the underlying
premise for most process improvements.

3.3 IMPROVING TEAM EFFECTIVENESS
Teamwork is much more important than the sum of the individuals. With software teams, a project manager
needs to configure a balance of solid talent with highly skilled people in the leverage positions. Some maxims
of team management include the following:
 A well-managed project can succeed with a nominal engineering team.
 A mismanaged project will almost never succeed, even with an expert team of engineers.
 A well-architected system can be built by a nominal team of software builders.
 A poorly architected system will flounder even with an expert team of builders.

Boehm five staffing principles are

1. The principle of top talent: Use better and fewer people
2. The principle of job matching: Fit the tasks to the skills and motivation of the people available.
3. The principle of career progression: An organization does best in the long run by helping its people

to self-actualize.
4. The principle of team balance: Select people who will complement and harmonize with one another
5. The principle of phase-out: Keeping a misfit on the team doesn't benefit anyone

Software project managers need many leadership qualities in order to enhance team effectiveness. The

following are some crucial attributes of successful software project managers that deserve much more attention:

1. Hiring skills. Few decisions are as important as hiring decisions. Placing the right person in the right
job seems obvious but is surprisingly hard to achieve.

2. Customer-interface skill. Avoiding adversarial relationships among stakeholders is a prerequisite for
success.

Decision-making skill. The jillion books written about management have failed to provide a clear
definition of this attribute. We all know a good leader when we run into one, and decision-making
skill seems obvious despite its intangible definition.

Team-building skill. Teamwork requires that a manager establish trust, motivate progress, exploit
eccentric prima donnas, transition average people into top performers, eliminate misfits, and
consolidate diverse opinions into a team direction.

Selling skill. Successful project managers must sell all stakeholders (including themselves) on decisions
and priorities, sell candidates on job positions, sell changes to the status quo in the face of resistance, and
sell achievements against objectives. In practice, selling requires continuous negotiation, compromise,
and empathy

 3.4 IMPROVING AUTOMATION THROUGH SOFTWARE ENVIRONMENTS
The tools and environment used in the software process generally have a linear effect on the productivity

of the process. Planning tools, requirements management tools, visual modeling tools, compilers, editors,
debuggers, quality assurance analysis tools, test tools, and user interfaces provide crucial automation support
for evolving the software engineering artifacts. Above all, configuration management environments provide the
foundation for executing and instrument the process. At first order, the isolated impact of tools and automation
generally allows improvements of 20% to 40% in effort. However, tools and environments must be viewed as
the primary delivery vehicle for process automation and improvement, so their impact can be much higher.
 Automation of the design process provides payback in quality, the ability to estimate costs and
schedules, and overall productivity using a smaller team.
Round-trip engineering describe the key capability of environments that support iterative development. As we
have moved into maintaining different information repositories for the engineering artifacts, we need
automation support to ensure efficient and error-free transition of data from one artifact to another. Forward
engineering is the automation of one engineering artifact from another, more abstract representation. For
example, compilers and linkers have provided automated transition of source code into executable code.
Reverse engineering is the generation or modification of a more abstract representation from an existing artifact
(for example, creating a .visual design model from a source code representation).
Economic improvements associated with tools and environments. It is common for tool vendors to make rela-
tively accurate individual assessments of life-cycle activities to support claims about the potential economic
impact of their tools. For example, it is easy to find statements such as the following from companies in a
particular tool.

 Requirements analysis and evolution activities consume 40% of life-cycle costs.
 Software design activities have an impact on more than 50% of the resources.
 Coding and unit testing activities consume about 50% of software development effort and schedule.
 Test activities can consume as much as 50% of a project's resources.
 Configuration control and change management are critical activities that can consume as much as

25% of resources on a large-scale project.
 Documentation activities can consume more than 30% of project engineering resources.
 Project management, business administration, and progress assessment can consume as much as 30%

of project budgets.

3.5 ACHIEVING REQUIRED QUALITY
Software best practices are derived from the development process and technologies. Table 3-5 summarizes
some dimensions of quality improvement.

Key practices that improve overall software quality include the following:

 Focusing on driving requirements and critical use cases early in the life cycle, focusing on
requirements completeness and traceability late in the life cycle, and focusing throughout the life cycle
on a balance between requirements evolution, design evolution, and plan evolution

 Using metrics and indicators to measure the progress and quality of an architecture as it evolves from
a high-level prototype into a fully compliant product

 Providing integrated life-cycle environments that support early and continuous configuration control,
change management, rigorous design methods, document automation, and regression test automation

 Using visual modeling and higher level languages that support architectural control, abstraction,
reliable programming, reuse, and self-documentation

 Early and continuous insight into performance issues through demonstration-based evaluations

Conventional development processes stressed early sizing and timing estimates of computer program
resource utilization. However, the typical chronology of events in performance assessment was as follows

 Project inception. The proposed design was asserted to be low risk with adequate performance
margin.

 Initial design review. Optimistic assessments of adequate design margin were based mostly on paper
analysis or rough simulation of the critical threads. In most cases, the actual application algorithms
and database sizes were fairly well understood.

 Mid-life-cycle design review. The assessments started whittling away at the margin, as early
benchmarks and initial tests began exposing the optimism inherent in earlier estimates.

 Integration and test. Serious performance problems were uncovered, necessitating fundamental
changes in the architecture. The underlying infrastructure was usually the scapegoat, but the real
culprit was immature use of the infrastructure, immature architectural solutions, or poorly understood
early design trade-offs.

3.6 PEER INSPECTIONS: A PRAGMATIC VIEW

Peer inspections are frequently over hyped as the key aspect of a quality system. In my experience, peer reviews
are valuable as secondary mechanisms, but they are rarely significant contributors to quality compared with the
following primary quality mechanisms and indicators, which should be emphasized in the management process:

 Transitioning engineering information from one artifact set to another, thereby assessing the consistency,
feasibility, understandability, and technology constraints inherent in the engineering artifacts

 Major milestone demonstrations that force the artifacts to be assessed against tangible criteria in the
context of relevant use cases

 Environment tools (compilers, debuggers, analyzers, automated test suites) that ensure representation
rigor, consistency, completeness, and change control

 Life-cycle testing for detailed insight into critical trade-offs, acceptance criteria, and requirements
compliance

 Change management metrics for objective insight into multiple-perspective change trends and
convergence or divergence from quality and progress goals

Inspections are also a good vehicle for holding authors accountable for quality products. All authors of
software and documentation should have their products scrutinized as a natural by-product of the process.
Therefore, the coverage of inspections should be across all authors rather than across all components.

===THE END===

